Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications.

نویسندگان

  • S Pinto
  • P Alves
  • C M Matos
  • A C Santos
  • L R Rodrigues
  • J A Teixeira
  • M H Gil
چکیده

Poly(dimethyl siloxane) elastomer, (PDMS) is widely used as a biomaterial. However, PDMS is very hydrophobic and easily colonized by several bacteria and yeasts. Consequently, surface modification has been used to improve its wettability and reduce bacterial adhesion. The aim of this work was to modify the PDMS surface in order to improve its hydrophilicity and bacterial cell repulsion to be used as a biomaterial. Plasma was used to activate the PDMS surface and sequentially promote the attachment of a synthetic surfactant, Pluronic F-68, or a polymer, Poly(ethylene glycol) methyl methacrylate, PEGMA. Bare PDMS, PDMS argon plasma activated, PDMS coated with Pluronic F-68 and PEGMA-grafted PDMS were characterized by contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The influence of the surface modifications on blood compatibility of the materials was evaluated by thrombosis and haemolysis assays. The cytotoxicity of these materials was tested for mouse macrophages. After modification, AFM results suggest the presence of a distinct layer at the surface and by the contact angle measures it was observed an increase of hydrophilicity. XPS analysis indicates an increase of the oxygen content at the surface as a result of the modification. All the studied materials revealed no toxicity and were found to be non-haemolytic or in some cases slightly haemolytic. Therefore, plasma was found to be an effective technique for the PDMS surface modification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly(dimethyl siloxane) surface modification with biosurfactants isolated from probiotic strains.

Depending on the final application envisaged for a given biomaterial, many surfaces must be modified before use. The material performance in a biological environment is mainly mediated by its surface properties that can be improved using suitable modification methods. The aim of this work was to coat poly(dimethyl siloxane) (PDMS) surfaces with biosurfactants (BSs) and to evaluate how these com...

متن کامل

Surface Modification of Silicone Rubber Membrane by Microwave Discharge to Improve Biocompatibility

      Wetability of biocompatible polymers can be improved by plasma surface modification. The purpose of this study was to surface modify an experimental poly (dimethylsiloxane) rubber (PDMS) material in order to improve its wetability and biocompatibility. Surface properties of the PDMS were characterized using contact angles measurement for wetability analysis. Samples of experimental silico...

متن کامل

Effect of ultraviolet/ozone treatment on the surface and bulk properties of poly(dimethyl siloxane) and poly(vinylmethyl siloxane) networks

We present a comparative study aiming at comprehending the effect of ultraviolet/ozone treatment on the modification of poly(dimethyl siloxane) (PDMS) and poly(vinylmethyl siloxane) (PVMS) silicone elastomers networks (SENs). Both PDMS and PVMS SENs undergo dramatic changes in their properties when exposed to UVO. The surface chemical composition of both PDMS and PVMS at long UVO treatment time...

متن کامل

Improvement of gas separation properties of polyurethane membrane using plasma grafting

In recent years, plasma treatments have given good results since they offer high technological efficiency with low waste generation. One of the most important characteristics of plasma methods is their action only on a thin surface layer, whereas the bulk of sample remains unchanged and the modified material keeps its chemical and mechanical properties. In this research, polyurethane membrane s...

متن کامل

Surface Modification of Poly(lactic acid) Fabrics with Plasma Pretreatment and Chitosan/Siloxane Polyesters Coating for Color Strength Improvement

As people in the 21st century become increasingly environmentally aware, environmentally friendly products have come into focus. As such, environmentally friendly textiles and eco-textiles have become an international trend in research and development. Poly(lactic acid) fiber, which is biodegradable, holds much promise, but it is difficult to deep dye. This study used chitosan, succine anhydrid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Colloids and surfaces. B, Biointerfaces

دوره 81 1  شماره 

صفحات  -

تاریخ انتشار 2010